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NUMERICAL SOLUTIONS OF NAVIER-STOKES EQUATIONS
FOR A BUTLER WING

Jamshid S. Abolhassani 1

Surendra N. Tiwari 2

Abstract

The flow field is simulated on the surface of a Butler wing in a uniform
stream. Results are presented for Mach number 3.5 and Reynolds number of
2,000,000. The simulation is done by integrating the viscous Navier-Stckes
equations. These equations govern the unsteady, viscous, compressible and heat
conducting flow of an ideal gas. The equations are written in curvilinear
coordinates so that the wing surface is represented accurately. O-type and H-
type grids have been used for this study, and results are compared. The
governing equations are solved by the MacCormack time-split method, and the
results are compared with other theoretical and experimental results. The
codes are written in FORTRAN, vectorized and currently run on the CDC Vector

Processing System (VPS-32) computer.

1 Graduate Research Assistant, Department of Mechanical
Engineering and Mechanics, 01d Dominion University, Norfolk, Va,
23508, AIAA Student Member.

2 Eminent Professor, Department of Mechanical Engineering and
Mechanics, 01d Dominion University, Norfolk, VA, 23508, AIAA
Associate Fellow.
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Nomenclature

specific heat at constant volume
internal energy per unit volume

total energy per unit volume

vector fluxes for coordinates directions
Jacobin matrix

coefficient of bulk viscosity
coefficient of thermal conductivity
length of the wing

Mach number

magnitude of normal vector on any surface
static pressure

prandtl number

components of heat conduct vectors
universal gas constant

Reynolds number

static temperature

free stream temperature

wall temperature

reference temperature for Sutherland viscosity law

time
constant for Sutherland viscosity law

vector of state variables

velocity components in the physical coordinates

contravariant velocity in the computational coordinates

coordinates for the physical domain

coefficient for pressure damping



Y ratio of specific heat

£,M,C coordinates for the computational domain

B molecular viscosity

B reference viscosity in Sutherland viscosity law
n' bulk viscosity

p density

T stress tensor

TXX’TXY’TXZ elements of the stress tensor

Tyy,Tyz,Tzz components of viscous dissipation functions
¢x’¢y’¢z’ 6ij Kronecker delta function

subscript

W solid walls

o free stream value

sugerscrigt

n time level

indices

i,J,k point indices

operators

v gradient

0 inner product

LE,Ln,LE finite difference operators
d partial differentiations

vi




Introduction

The Butler wing is a delta wing which was proposed by D. S. Butler 1. The
planform of the body is an isosceles triangle, and the leading edges of the
wing lay along the Mach lines of the unperturbed stream. The first 20% of the
wing is conical and the last 80% of the wing has elliptical cross sections
with increasing eccentricity along the x-axis. At the trailing edge, the
elliptical cross section has infinite eccentricity and this last cross section
is a straight line. D. S. Butler has compared the experimental results for
surface pressure with the theoretical results using the slender-body theory

1. Walkden and Caine

approximation to simplify the inviscid equations of motion
estimated the pressure on the surface of a Butler wing at zero incident in a
steady uniform stream by numerically integrating the two semi-characteristic
forms of the equations governing inviscid supersonic flow of an ideal gas with
constant specific heatz. Squire obtained experimental results for a Butler
wing varying Mach number and angle of attack3. Inviscid equations have been
used in all previous analytical and numerical investigations. |

In order to study the flow around a Butler wing, the Navier-Stokes
equations are numerically solved. The equations are unsteady, compressible,
viscous and three-dimensional. The time dependency of the governing equations
allows the solution to progress naturally from an arbitrary initial guess to
an asymptotic steady state, if one exists. The equations are transformed from
physical coordinates to computational coordinates which allows solutions to be
computed in a rectangular domain. The equations are solved by the MacCormack
time-split technique4’ 5 which is vectorized and programmed to run on the CDC
VPS-32 (CYBER 205) computer. The codes are written in 32-bit (half-word)
FORTRAN.




The Butler wing is symmetric about (x-z) and (x-y) planes. This permits
the use of one quarter of the entire physical domain for flow field
computation with zero angle of attack (Fig. 1). However, if the angle of
attack 1is greater than zero, then half of the physical domain should be
considered.

Grid generation is the first step which should be considered in obtaining
flow field solutions over any configuration. Due to the data base management
of the present program, it is necessary to map entire physical domain into a
rectangular parallelepiped. Among the grid types, selection of an O-type grid
for cross sections in the x-coordinate direction would produce a point
singularity at the nose tip and a line singularity along the trailing edges.
Nevertheless, an O-type grid maps the solid boundary onto an entire face of
the parallelepiped. It is also possible to generate a highly orthogonal grid
in the regions where there are relative high curvatures. However, a H-type
grid does not map the solid boundary onto an entire face of the computational
box. This creates a potential problem in updating the boundary conditions near
the leading edges of the wing and also the grid in some regions could be
highly skewed. But, there are no singularities in the grid. Both types of
grid have been used in this study, and results are compared with other

numerical, analytical and experimental results.




Governing Equations

The governing equations for a thermal fluid system are the conservation
of mass, momentum and energy. These equations are developed for an arbitrary
region under the assumption that the system is a continuum. Equations of
motion for viscous, compressible, unsteady and heat conducting flow can be

written as:

Continuity: %% + Ve(pu) = 0, (1a)
M ) a(pu) -— =

omentum: -t Ve{puu - %) = 0, (1b)
e i dE = e ==

nergy: 3T Ve(Eu + g - u*t) =0, (1c)

where E is the total energy per unit volume given by E = p (e + u-u/2) and e
is the internal energy per unit volume. £Equations 1lb and 1lc can be simplified
by assuming that the stress at a point is linearly dependent on the rate of

strain (deformation) of the fluid (Newtonian fluid),

aui ou, 7 . auk
T_IJ = - pé'i‘] + P.(Bx—j"‘ E) + 61J b Wk, (2a)

where 6ij is Kronecker delta function, and.u' is the second coefficient of
viscosity which is related to the coefficient of bulk viscosity (k) by the
expression k=2 u/3+ p'. The contribution of x can be neglected if the
pressure in a fluid is not changed abruptly during its expansion or
contraction. Under this assumption, the stress tensor can be related to the

pressure and velocity components as:

du; du. o, ou,
171‘] - péTJ + u[(BR-J. + m) - T 61,] W)]. (2b)



For an isotropic system, the heat flux in Eq. (lc) can be expressed in terms

of temperature gradient (Fourier law of heat conduction) as:
q = - KvT (3)
where K is the coefficient of thermal conductivity. A common approximation

used for viscosity is based on the kinetic theory of gases using an idealized

intermolecular-forces potential; the relation is

B (T)3/2 Tr + % (4)
b T T+73,
where
S, f 198 'R;
b, = 0.1716 np

The coefficients of thermal conductivity K can be determined from Prandtl

number as

yu C,

K = b (5)

where C, 1is the specific heat at constant volume and y is the ratio of
specific heats.

It is essential to have a supplementary relation to close the system of
equations (la-1c). By neglecting the inter-molecular forces (thermally perfect

system), thermodynamic properties can be described as:
p = pRT, (6)

where R is the universal gas constant. Thermally perfect gas assumption
permits to express the internal energy as a function of temperature only i.e.,

e=e(T). In addition, assumption of calorically perfect gas [e(0)=0] allows the




following relation:
= Cv T. (7)
A substitution of Eq. (6) into Eq. (7) results in
p = pe (y-1), (8)
The equations of motion are in conservative form. For simplicity, these

equations can be written in a compact vector form as

ou 3G , o (9)
3t E‘ B’ 3z
} where
! ™~
| f
| N
- T +p
l ou XX
! U=<pv> N F=<pl.]V"'|7x.y >:
pW
puw - T
: Xz
\EJ
kEu+qx-¢x+pu/
/ - e Se—
pv pw
mv-'wx puw - T,
G=<pvv-1:yy+p, H = ﬂpvw-‘czy >
k pvw - Tyz L
\EV+qy'¢y+p‘x LEw+qz'¢z+p"’)

For the sake of generality, the governing equations are transformed from a

physical domain into a computational domain as




%% *< &y (%%, %%,.%g) +
£, |
x CJ (10)
R
* )

The transformation coefficients can be computed from a functional

relation between the computational coordinates and the physical coordinates.
g = E(X,¥,2), n=nlx,y,2z), € =2&x,y,z). (11)

If Eq. (11) were known, the transformation coefficient could have be computed
by direct differentiation. If not, after some algebraic manipulations, the

transformation coefficients can computed by

-1
(v, 2p = Ye2) / 974,

wm
1]

X
.. ) -1
g, = =(x 2z = xp2) / 978,
) . -1
g, = Xy = xey )/ 1977,
-1 (12)
=t zgmyezd /07,
i i -1
= (xg 2= xpzg) / |97,
n, = =(xg ¥y = X V) Bk
-1
ex = (yEzn-ynzg) / |9 |»



-1
ey = =lxp z = x z) /|37,

n

g

-1
2= (g vy = x )/ 974,

where [J'l] is defined as
-ll

|97 = xg (v zp = yp 2) = X g 2 v 2g)

txp lyg 2 -y zg)

In the present case, the grid planes are perpendicular to the x-coordinate.

Consequently, physical coordinates can be written as

x = x(&)>
y = y(g,n,¢),
z = z(g,n,C).

This reduces the transformation coefficients from nine to five none zero

elements therefore reducing the memory requirements.

(13)

(14)




Method of Solution

A time marching method is used to compute the solution so that the
possible transient features can be readily captured. This method is an
explicit second-order accurate time-split predictor-corrector algorithm 5. The
governing equation, Eq. (10) is discretized in computational directions. In a

compact form, it can be expressed as

- n+l
u . = [Ln(Atn)][LC(AtC)][Lg(Atg)][LC(AtC)][Ln(Atn)], (15)
where
-t =1
Aty = Aty = 7 At
and Lg, Ln and LC » are the operators in £, n and ¢ directions, respectively.

A time step is completed in this algorithm with the application of each
operator applied symmetrically about the middle operator. For example,

operator L. can be defined as

g
_ out
L.(at.) = U . (16)
8 ijk
for predictor step:
- in At
m E r(E = dE
U = U - [(F, - F, ,) ==
i 3k i ik X i ji=1’ ¥x
+ (G, -8 )28+ A - 8], (17)
i i-1' Jy i 1 1 '3- ijk
for corrector step:
out in At
= I o _ & oryE _ = 0Of

ijk ijk

-6 &4 (A, -0, % . (18)

* (Gi+1 i’ dy i+l i’ 9z,




The solution is stable if the time step of each operator does not exceed the
allowable step size for that operator. The finite difference scheme is
consistent if the sum of the time steps for each operators are equal. The
solution is second order accurate if operators are applied symmetrically.

This method has a time-step stability limit, but there is no rigorous

stability analysis available. A commonly used conservative time-step is

-1
P 1 R 7 I L VR S S SR T (19)
AX Ay

Az sz Ayz A22

where ¢ is the local speed of sound.

In the supersonic region, ;here exits a large gradient which requires a
very fine mesh to resolve it. Most center difference methods admit a solution
which has sawtooth or plus-minus waves with the shortest wave length that the
mesh can support. In the case of a nonlinear problem, these short waves
interact, vanish, and reappear again as distorted 1long waves or
oscillations. These oscillations eventually blow up the solution,if they are
not resolved. The oscillations of "low frequency" can be suppressed by adding
a fourth order damping. A common damping used is the pressure dampening. This

can be expressed in computational coordinates as

[Ya] + ¢ &2

_ 39 p ol _
a Aty 61 =5 17 o xx=s X = 1,2,3 (20)
L 278, ~ 2

where V2 is the contravariant velocity.



Initial and Boundary Conditions

In computational fluid dynamics the initial conditions usually correspond
to a real initial situation for a transient problem, or a rough guess for a
steady state problem. In practice, initial conditions are obtained from
experiments, empirical relations, approximate theories or previous
computational results. An improper initial guess may result in generating
unrealistic strong transient waves which propagate through the computational
region dominating the flow field and eventually lead to a solution failure. An
important requirement for the initial conditions 1is that they should be
physically as close as possible to the actual nature of the flow field in the
region under study. This will minimize the number of iterations required for
convergence. An attractive approach is to initialize the entire flow field
with a crude and simple guess (e.g., free stream condition). During the course
of the computation, both body and upstream boundary conditions are changed in
a gradual manner to their final values over a prescribed number of iterations.
In the present study, this technique is applied in only one step which is
equivalent to impulsive initial conditions.

It is equally important to implement a realistic, accurate and stable
method to determine boundary conditions. The application of certain conditions
may cause numerical instability even though the flow is physically stable.
Most of the boundary conditions currently implemented are drawn mainly upon
intuitions, simple analytical expressions, wind tunnel experiments and
computational experimentations. In the selection of boundary conditions,
consideration should be given to the following criteria: convergence,
stability, computer time and above all the physical justification.

For the present case, there are five different boundary conditions. They

are upstream, downstream, lateral, top, and solid boundary. For the case of H-

10




grid, the upstream boundary is located at six grid point spacings ahead of the
nose of the wing. Following undisturbed free stream conditions are assumed

for this boundary:

u upstream Ve (21)

For the case of 0-grid, the upstream boundary is set at 5% of the body length
to avoid the singularities. The conical assumption has been made for this
boundarys. Flow is said to be conical if the physical conditions such as
pressure and velocity do not vary with position along any ray through a point,
which is referred to as the vertex. For this case, the viscous-conical
solutions are obtained for a cone at proper angle of attack. This is done by
creating a conical grid, which is straight lines (rays) from the vertex and
integrating the conical Navier-Stokes equations. This solution is valid
provided the body is sufficiently slender.

A zero gradient in the y-direction (parallel to the primary direction of
flow) is assumed for the downstream boundary, i.e.,

U

B-x = 0.

—
N
Ny

~—

The lateral boundaries are located far enough away form the body to avoid any
influence on the interaction region. Presently, a zero gradient in the z-
direction is assumed for these boundaries,i.e.,

3l

E = 0. (23)

Top

The walls are assumed to be impermeable and no-slip boundary conditions are
applied, therefore, all velocity components are assumed to be zero. Similarly,
the wall is assumed to have a constant temperature T,. A zero normal pressure

gradient is assumed for the solid surface, i.e.,

11



oP

= 0. (24)

Soh‘d=
This appears to be a boundary-layer approximation (i.e., a zero normal
pressure gradient). It is, however, a much milder approximation, since
constant pressure is not applied through the boundary layer but over one grid
line in the boundary layer. This approximation has yielded stable computation
for both the non-separated and separated boundary 1ayers7. For general

curviliear coordinates, Eq. (24) can be expressed as

(§x n, + iy n, g, nz) 2 +

2 .2 42,

(n % y z

P+
1
(€, e * Cyny * 5, n; Pe = 0. (25)

This equation is satisfactory even for skew grids near solid boundaries.

12



Applications to a Butler Wing

As mentioned in the introduction, the Butler wing is a delta wing which
was proposed by D. S. Butlerl. The Butler wing is analogous to an elliptic
piston which the ratio of major and minor axes changes while disturbing the
fluid. The plan form of the body (Fig. la) is an isosceles triangle, and
leading edges of the wing are laid along the Mach lines of the undisturbed
stream. For the first 20% of the length, the body is a right circular cone.
The reminder of the body has elliptical sections which become more eccentric
as the sharp trailing edges are approached (Fig. 1b). The semi major and minor

axes are given by:

Major axis (semi-span) = % (26a)
0<=x<=L

Minor axis (thickness on = %- (26b)
centerline) 0<=x<=0,2L
4 (26¢c)

. X _ x= 0.2L =y<=

= 3 [1 () ] 0.2L<=x<=L

where 62 = M2-1

The model is 0.8 ft. (0.2438 m) Tong, and the geometry has been generated
for Mach number of 3.5. That is the semi-apex angle of the plan form and the
initial conical nose is SIN"1(1./3.5) =16.602°,

This wing is symmetric about (xz) and (xy) planes. For zero angle of
attack, this permits us to use only one quarter of the entire physical domain
(Figs. la-1lc) which 1is extremely advantageous from computational viewpoint.
However, if the angle of attack is non-zero then half of the physical domain
should be considered.

Some specific flow field results have been obtained for the Butler wing

and these are discussed in the next section.

13



Results and Discussion

In the previous experiments3, the surface oil-flow patterns over the wing
at various angles of attack and at Mach number 3.5 showed no signs of
transition and the nature of the o0il streaklines was typical of a laminar
flow. Therefore, results are obtained only for laminar flow over a Butler wing
at Mach number of 3.5, Reynolds number of 2x106/ft (6.56x106/m), free static
temperature of 390°R (216.67°K), wall temperature of 1092°R (606.67°K), length
of 0.80 ft (0.2438 m), and at zero and ten degree angles of attack. In this
study, a two boundary grid generation (TBGG) technique 4 is used, this method
is essentially an algebraic method. The application of the TBGG method
requires that the entire body be sliced into different cross-sections. These
cross-sections are obtained 1in the stream-wise direction by analytical
descriptions of the wing surface, (Eqs. 26a-26c). Then, two types of grid
generated for this wing the H-type and O-type. Results of both cases are

compared and discussed.

H-Type Grid

In this case, the entire flow field is sliced into fifty-five stations in
the stream-wise direction, and each station has 64x36 grid points (Fig. 2).
There is a total of 126,720 grid points which take 2.8 million 32-bit words of
primary memory (16 variables). The required computational time is 1.9x10-5
sec/grid point/iteration (2.5 sec/iteration) which is typical for the CYBER
205 with two pipes. Results are obtained for zero angle of attack. The
computed pressures are plotted in Figs. 3a-3c. The pressure coefficient along
the center line is shown in Fig. 3a. The results are compared with available
experimental and numerical results (Refs. 1,3,8). The results on the center

1ine are in excellent agreement with the experimental and previously obtained

14




numerical results (Refs. 1,3,8). At 41.66% and 68.33% chordwise position, the
pressure ratios are plotted against the conical spanwise coordinates y/xtan
(¢), Figs. (3b and 3c). They are in good agreement with experimental and
numerical results. However, There are some discrepancies in the results
between 30° and 60°. This is probably due to the fact that grid lines are
notorthogonal near those regions and is a direct consequence of the H-type

grid.
0-Type Grid

For this case, the physical domain is limited to 5% to 95% of the wing.
This is done to avoid any singularities. The conical Navier-Stokes solutions
are forced for the upstream boundary which is located at 5% of the wing. This
solution is obtained by the integration of the Navier-Stokes equations 6 for a
conical grid with proper boundary conditions. The wing is sliced into forty-
one stations in the stream-wise direction, and each station has 41x127 grid
points (Fig 4). There is a total of 213,487 grid points which take 4.7 million
32-bit words of primary memory. Results are obtained for zero and ten degree
angle of attack.

Results for zero angle of attack are compared with results obtained with
the H-type grid, from the experiments and other numerical results (Refs.
1,3,8). The computed pressures are plotted in Figs. 5a-5¢c. The pressure
coefficient along the center line (Fig. 5a) is in good agreement with other
numerical and experimental results. Nevertheless, there is some discrepancy
near the nose region. This may be due to the fact that the upstream solutions
are based on the conical solutions. But, solutions match exactly with results
from H-type grid, this 1is because grid topology near the center line is the

same for both grid types. At 41,67% and 68.33% chordwise position, the

15




pressure ratios are plotted against the conical spanwise coordinates y/x tan
(¢). They are in excellent agreement with experimental and numerical results
(Fig. 5b and 5c). In addition they are much closer to the experimental results
compared with results from H-type grid. This is due to good grid orthogonality
in the case of O-type grid. On the thick sections near the nose the pressure
is highest on the centerline and falls toward the leading edge. Figure 5d
shows the cross-flow velocity at 5%, 23%, 41%, 59%, 77% and 95%.

Results for ten degrees angle of attack are compared with experimental
results. The computed pressures are plotted in Figs. 6a-6d. At 17%, 30%, 50%
and 70% chordwise position, the pressure ratios are plotted against the
conical spanwise coordinates y/x tan (¢). They are in good agreement with
experimental and numerical results (Fig. 6a-6d). On the thick sections near
the nose the pressure is highest on the centerline and falls toward the
leading edge whereas near the trailing edge the spanwise distribution is more
'wing like' with the maximum pressure at the leading edge. The changeover is
shown by the pressure peaks in the pressure distributions at x/c=0.5 and 0.7
at 10° angle of attack. There are some discrepancy near x/c¢=30-50; this may be
due to the fact that Squire 3 has not used the exact model of the Butler wing.
In order to mount the model in the wind tunnel, the 1lower surface was
distorted to include a sting support. Figure 6e shows the cross-velocity at
5%, 23%, 41%, 59%, 77% and 95%. These figures show a weak cross-wise
separations at suction side which is confined to the body. At 59%, the cross
flow has separated but a well defined vortex is not visible. Squire9 has
performed a series of tests to investigate the effects of thickness on the
longitudinal characteristic of a delta wing of aspect ratio. The tests on the
thick symmetrical delta wings have confirmed that the 1ift curve slope

decreases as thickness is increased. This loss of 1ift is associated with a

16



weaker vortex system giving less nonlinear 1ift. Squire3 also observed a pair
vortices at the trailing edges, but there was no sign of any spanwise flow

outboard of these vortices.
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Concluding Remarks

General formulations are presented to investigate the flow field over
complex configurations for high speed free stream conditions. An advanced
algebraic method is used to generate grids around these configurations. The
computational procedure developed is applied to investigate the flow field
over a Butler wing. Illustrative results obtained for specified free stream
conditions compare very well with available experimental and numerical
resul ts. Results are obtained only for laminar flow over a Butler wing at Mach
number of 3.5, Reynolds number of 2x106/ft (6.56x106/m), free static
temperature of 390°R (216.67°K), wall temperature of 1092°R (606.67°K), length
of 0.80 ft (0.2438 m) and the wing is at zero and ten degree angles of attack.
Two types of grid have been generated for this wing; H-type and O-type.

Results of both cases are compared and discussed.

18
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Figure 2. H-Type Grid for a Butler Wing
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Figure 6d. Pressure Coeffient

(X/C 70% , Ten Degree Angle of Attack)

24



AL ————— e
SRLTY

Secriamsaneniey

%56=0/x

(19®13v Jo e[Suy ee1Beq uwe]

e

AR &
!

$LL=0/X

0/X) 3ueizje0) sansseig -e9 eandijg

$Tv=0/x

$65=2/x%

25




